

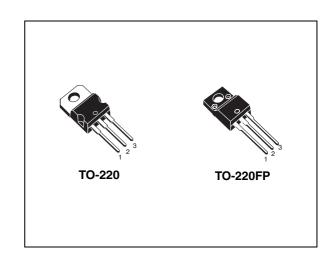
STP8NM50 STP8NM50FP

N-channel 550V @ Tjmax - 0.7Ω - 8A - TO-220 - TO-220FP MDmesh™ Power MOSFET

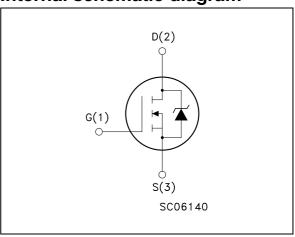
General features

Туре	V _{DSS} (@Tjmax)	R _{DS(on)}	I _D
STP8NM50	550V	<0.8Ω	8A
STP8NM50FP	550V	<0.8Ω	8A ⁽¹⁾

- 1. Limited only by maximum temperature allowed
- 100% avalanche tested
- High dv/dt and avalanche capabilities
- Low gate input resistance
- Low input capacitance and gate charge


The MDmesh™ is a new revolutionary Power MOSFET technology that associates the multiple drain process with the company's PowerMESH™ horizontal layout. The resulting product has an outstanding low on-resistance, impressively high dv/dt and excellent avalanche characteristics. The adoption of the company's proprietary strip technique yields overall dynamic performance that is significantly better than that of similar competition's products.

Applications


■ Switching application

Order codes

Part number	Marking	Package	Packaging
STP8NM50	P8NM50	TO-220	Tube
STP8NM50FP	P8NM50FP	TO-220FP	Tube

Internal schematic diagram

Contents

1	Electrical ratings
2	Electrical characteristics
	2.1 Electrical characteristics (curves)
3	Test circuit
4	Package mechanical data
5	Revision history

1 Electrical ratings

Table 1. Absolute maximum ratings

Sumbal	Parameter	Valu	ie	Unit
Symbol	Farameter	TO-220	TO-220FP	Onit
V _{GS}	Gate-source voltage	± 30	0	V
I _D	Drain current (continuous) at T _C = 25°C	8	8 ⁽¹⁾	Α
I _D	Drain current (continuous) at T _C = 100°C	5 5 ⁽¹⁾		Α
I _{DM} ⁽²⁾	Drain current (pulsed)	32 32 ⁽¹⁾		Α
P _{TOT}	Total dissipation at T _C = 25°C	100	25	W
	Derating factor	0.8	}	W/°C
dv/dt ⁽³⁾	Peak diode recovery voltage slope	15		V/ns
V _{ISO}	Insulation withstand voltage (RMS) from all three leads to external heat sink (t=1s;TC=25°C)	2500		V
T _j T _{stg}	Operating junction temperature Storage temperature	-65 to 150		°C

- 1. Limited only by maximum temperature allowed
- 2. Pulse width limited by safe operating area
- 3. $I_{SD} \leq 8 \text{ A, di/dt} \leq 200 \text{ A/}\mu\text{s, V}_{DD} \leq V_{(BR)DSS}, T_j \leq T_{JMAX}$.

Table 2. Thermal data

Symbol	Parameter	TO-220 TO-220FP		Unit
Rthj-case	Thermal resistance junction-case max	1.25	5	°C/W
Rthj-amb	Thermal resistance junction-amb max	62.5		°C/W
T _I	Maximum lead temperature for soldering purpose	300		°C

Table 3. Avalanche characteristics

Symbol	Parameter	Max value	Unit
I _{AR}	Avalanche current, repetitive or not-repetitive (pulse width limited by Tj max)	2.5	Α
E _{AS}	Single pulse avalanche energy (starting Tj=25°C, I _D =I _{AR} , V _{DD} = 50V)	200	mJ

2 Electrical characteristics

(T_{CASE}=25°C unless otherwise specified)

Table 4. On/off states

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
V _{(BR)DSS}	Drain-source breakdown voltage	$I_D = 250 \mu A, V_{GS} = 0$	500			٧
I _{DSS}	Zero gate voltage drain current (V _{GS} = 0)	$V_{DS} = Max \text{ rating,}$ $V_{DS} = Max \text{ rating } @ 125^{\circ}C$			1 10	μ Α μ Α
I _{GSS}	Gate body leakage current (V _{DS} = 0)	V _{GS} = ±30 V			±100	nA
V _{GS(th)}	Gate threshold voltage	$V_{DS} = V_{GS}, I_{D} = 250 \mu A$	3	4	5	V
R _{DS(on)}	Static drain-source on resistance	V _{GS} = 10 V, I _D = 2.5A		0.7	0.8	Ω

Table 5. Dynamic

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
9 _{fs} ⁽¹⁾	Forward transconductance	$V_{DS} > I_{D(on)} \times R_{DS(on)max},$ $I_{D}=2.5A$		2.4		S
C _{iss} C _{oss} C _{rss}	Input capacitance Output capacitance Reverse transfer capacitance	V _{DS} =25V, f=1 MHz, V _{GS} =0		415 88 12		pF pF pF
C _{oss eq.} ⁽²⁾	Equivalent ouput capacitance	V _{GS} =0, V _{DS} =0V to 400V		50		pF
Q _g Q _{gs} Q _{gd}	Total gate charge Gate-source charge Gate-drain charge	V_{DD} =400V, I_{D} = 5A V_{GS} =10V (see Figure 16)		13 4 6		nC nC nC
R_{G}	Gate input resistance	f=1MHz Gate DC Bias = 0 Test signal level = 20mV Open drain		3		Ω

^{1.} Pulsed: pulse duration=300 μ s, duty cycle 1.5%

^{2.} $C_{oss\ eq.}$ is defined as a constant equivalent capacitance giving the same charging time as C_{oss} when V_{DS} increases from 0 to 80% V_{DSS}

Table 6. Switching times

Symbol	Parameter	Test conditions	Min	Тур	Max	Unit
t _{d(on)}	Turn-on delay time Rise time	V_{DD} =250 V, I_{D} =2.5A, R_{G} =4.7 Ω , V_{GS} =10V (see Figure 15)		16 8		ns ns
t _{r(Voff)} t _f t _C	Off-voltage rise time Fall time Cross-over time	V_{DD} =400 V, I_{D} =5A, R_{G} =4.7 Ω , V_{GS} =10V (see Figure 15)		14 6 13		ns ns ns

Table 7. Source drain diode

Symbol	Parameter	Test conditions	Min	Тур	Max	Unit
I _{SD}	Source-drain current				8	Α
I _{SDM}	Source-drain current (pulsed)				32	Α
V_{SD}	Forward on voltage	I _{SD} =10A, V _{GS} =0			1.5	V
t _{rr}	Reverse recovery time	$I_{SD}=5A$, di/dt = 100A/ μ s,		185		ns
Q_{rr}	Reverse recovery charge	V _{DD} =100 V, Tj=25°C		1.1		μC
I _{RRM}	Reverse recovery current	(see Figure 20)		11.5		Α
t _{rr}	Reverse recovery time	I_{SD} =5A, di/dt = 100A/µs,		270		ns
Q_{rr}	Reverse recovery charge	V _{DD} =100 V, Tj=150°C		1.6		μC
I _{RRM}	Reverse recovery current	(see Figure 20)		12		Α

2.1 Electrical characteristics (curves)

Figure 1. Safe operating area for TO-220 Figure 2. Thermal impedance for TO-220

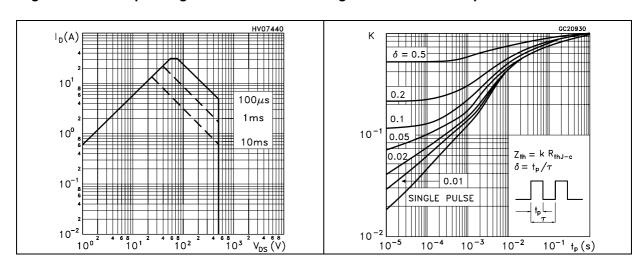


Figure 3. Safe operating area for TO-220FP Figure 4. Safe operating area for TO-220FP

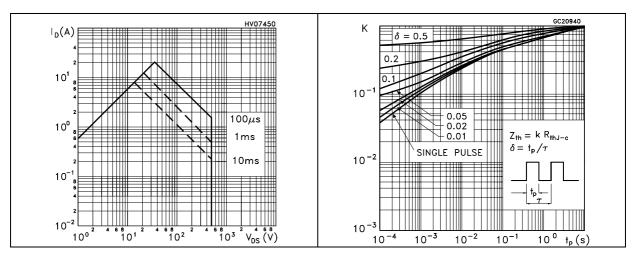


Figure 5. Output characteristics

Figure 6. Transfer characteristics

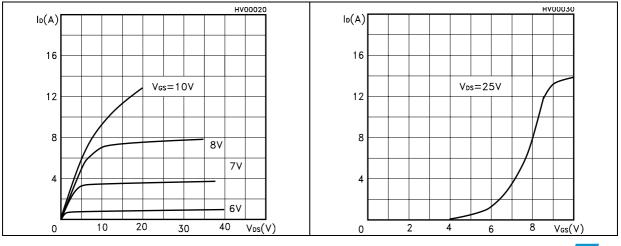


Figure 7. Transconductance

Figure 8. Static drain-source on resistance

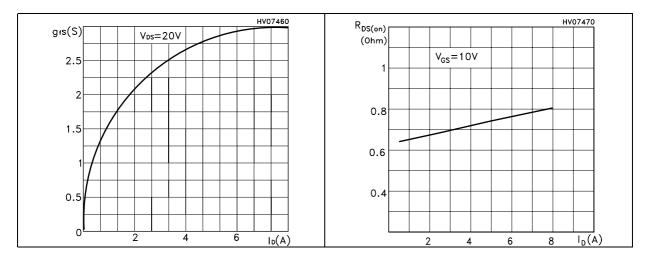


Figure 9. Gate charge vs gate-source voltage Figure 10. Capacitance variations

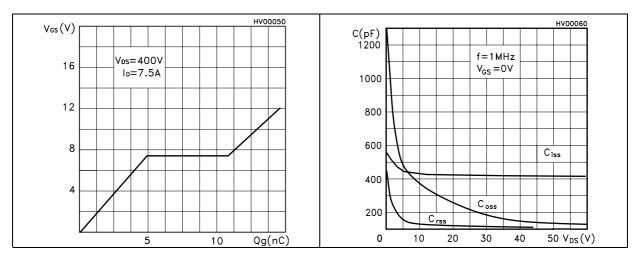


Figure 11. Normalized gate threshold voltage Figure 12. Normalized on resistance vs vs temperature temperature

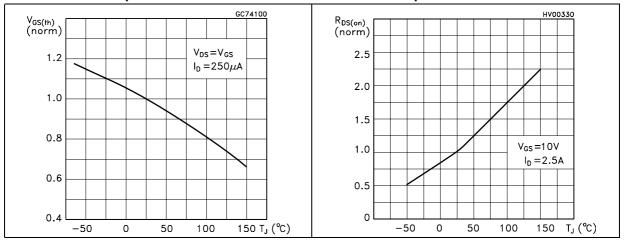
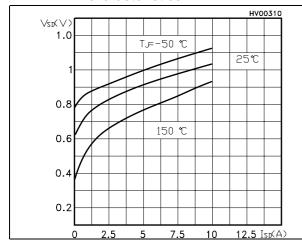
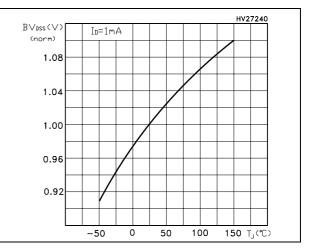




Figure 13. Source-drain diode forward characteristics

Figure 14. Normalized B_{VDSS} vs temperature

3 Test circuit

Figure 15. Switching times test circuit for resistive load

Figure 16. Gate charge test circuit

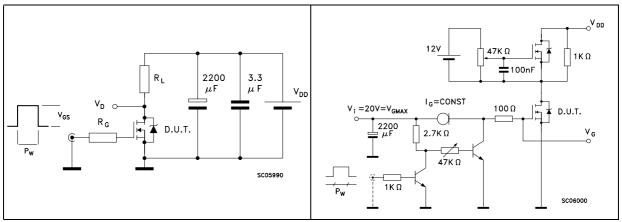


Figure 17. Test circuit for inductive load switching and diode recovery times

Figure 18. Unclamped Inductive load test circuit

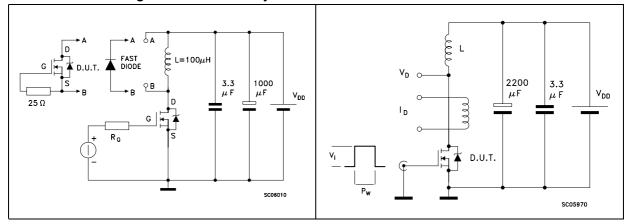
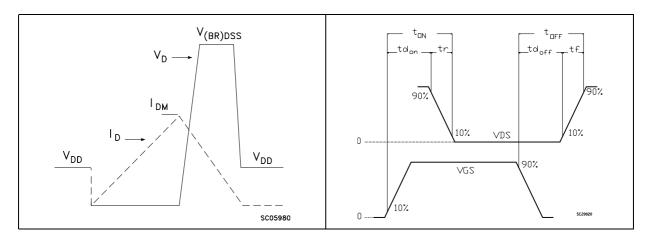
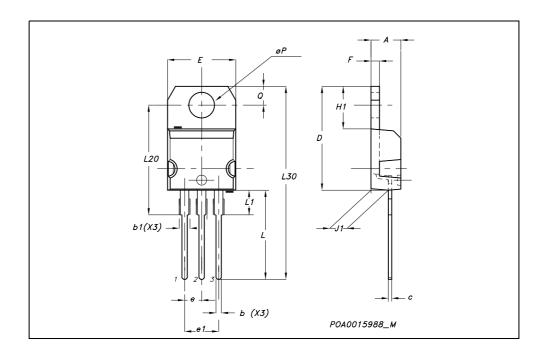



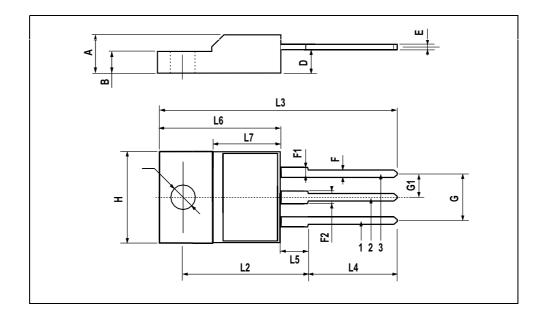
Figure 19. Unclamped inductive waveform

Figure 20. Switching time waveform



4 Package mechanical data

In order to meet environmental requirements, ST offers these devices in ECOPACK® packages. These packages have a Lead-free second level interconnect . The category of second level interconnect is marked on the package and on the inner box label, in compliance with JEDEC Standard JESD97. The maximum ratings related to soldering conditions are also marked on the inner box label. ECOPACK is an ST trademark. ECOPACK specifications are available at: www.st.com


TO-220 MECHANICAL DATA

DIM.		mm.			inch	
DIM.	MIN.	TYP	MAX.	MIN.	TYP.	MAX.
Α	4.40		4.60	0.173		0.181
b	0.61		0.88	0.024		0.034
b1	1.15		1.70	0.045		0.066
С	0.49		0.70	0.019		0.027
D	15.25		15.75	0.60		0.620
E	10		10.40	0.393		0.409
е	2.40		2.70	0.094		0.106
e1	4.95		5.15	0.194		0.202
F	1.23		1.32	0.048		0.052
H1	6.20		6.60	0.244		0.256
J1	2.40		2.72	0.094		0.107
L	13		14	0.511		0.551
L1	3.50		3.93	0.137		0.154
L20		16.40			0.645	
L30		28.90			1.137	
øΡ	3.75		3.85	0.147		0.151
Q	2.65		2.95	0.104		0.116

TO-220FP MECHANICAL DATA

DIM.		mm.			inch	
DIIVI.	MIN.	TYP	MAX.	MIN.	TYP.	MAX.
Α	4.4		4.6	0.173		0.181
В	2.5		2.7	0.098		0.106
D	2.5		2.75	0.098		0.108
Е	0.45		0.7	0.017		0.027
F	0.75		1	0.030		0.039
F1	1.15		1.7	0.045		0.067
F2	1.15		1.7	0.045		0.067
G	4.95		5.2	0.195		0.204
G1	2.4		2.7	0.094		0.106
Н	10		10.4	0.393		0.409
L2		16			0.630	
L3	28.6		30.6	1.126		1.204
L4	9.8		10.6	.0385		0.417
L5	2.9		3.6	0.114		0.141
L6	15.9		16.4	0.626		0.645
L7	9		9.3	0.354		0.366
Ø	3		3.2	0.118		0.126

5 Revision history

Table 8. Revision history

Date	Revision	Changes
09-Sep-2004	4	Title changed
11-Aug-2006	5	New template
22-Sep-2006	6	Some value change in Table 4: On/off states
18-Oct-2006	7	Updated Note 3 on page 3

Please Read Carefully:

Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any time, without notice.

All ST products are sold pursuant to ST's terms and conditions of sale.

Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no liability whatsoever relating to the choice, selection or use of the ST products and services described herein.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such third party products or services or any intellectual property contained therein.

UNLESS OTHERWISE SET FORTH IN ST'S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

UNLESS EXPRESSLY APPROVED IN WRITING BY AN AUTHORIZED ST REPRESENTATIVE, ST PRODUCTS ARE NOT RECOMMENDED, AUTHORIZED OR WARRANTED FOR USE IN MILITARY, AIR CRAFT, SPACE, LIFE SAVING, OR LIFE SUSTAINING APPLICATIONS, NOR IN PRODUCTS OR SYSTEMS WHERE FAILURE OR MALFUNCTION MAY RESULT IN PERSONAL INJURY, DEATH, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE. ST PRODUCTS WHICH ARE NOT SPECIFIED AS "AUTOMOTIVE GRADE" MAY ONLY BE USED IN AUTOMOTIVE APPLICATIONS AT USER'S OWN RISK.

Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any liability of ST.

ST and the ST logo are trademarks or registered trademarks of ST in various countries.

Information in this document supersedes and replaces all information previously supplied.

The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.

© 2006 STMicroelectronics - All rights reserved

STMicroelectronics group of companies

Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan - Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America

www.st.com